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Abstract

Continuous wave electron paramagnetic resonance imaging for in vivo mapping of spin distribution and spectral shape requires rapid
data acquisition. A spectral–spatial imaging technique is presented that provides an order of magnitude reduction in acquisition time,
compared to iterative tomographic reprojection. The proposed approach assumes that spectral shapes in the sample are well-approxi-
mated by members from a parametric family of functions. A model is developed for the spectra measured with magnetic field modula-
tion. Parameters defining the spin distribution and spectral shapes are then determined directly from the measurements using maximum a

posteriori probability estimation. The approach does not suffer approximation error from limited sweep width of the main magnetic field
and explicitly incorporates the variability in signal-to-noise ratio versus strength of magnetic field gradient. The processing technique is
experimentally demonstrated on a one-dimensional phantom containing a nitroxide spin label with constant g-factor. Using an L-band
EPR spectrometer, spectral shapes and spin distribution are accurately recovered from two projections and a spectral window which is
comparable to the maximum linewidth of the sample.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Electron paramagnetic resonance imaging (EPRI) is a
noninvasive technique capable of mapping unpaired elec-
trons for both endogenous and introduced free radicals
[1,2]. The technique has evolved over two decades to
become an important tool for studying free radicals in
many branches of science [3–5] and has potential for the
study of living biological systems [6–9]. Despite progress,
high-quality EPR imaging has been limited by several tech-
nical factors including resolution, sensitivity, and acquisi-
tion time [10,11].

Spatial EPRI is capable of mapping the distribution of
free radicals under the assumption that spectral lineshape
is invariant throughout the object. Thus, for samples hav-
ing spatially varying linewidths or multiple radical species,
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accurate mapping of spin distribution is not possible using
spatial EPRI. More importantly, spatial imaging only
quantifies the spin content, providing no information
about the nature of spins. To overcome this limitation,
an additional dimension, the spectral dimension, is
required to express spatially variant lineshape [12]. The
imaging technique that includes a spectral dimension is
termed spectral–spatial imaging. An example application
of spectral–spectral EPRI is oximetry based on linewidth
broadening from Heisenberg spin exchange interaction
between a paramagnetic EPR spin probe and unpaired
electrons in molecular oxygen [13].

In continuous wave (CW) EPRI, data are collected in
the form of projections [14] which are acquired by measur-
ing the absorption signal as a function of magnetic field in
the presence of a static gradient. The strength and the ori-
entation of the gradient vector are varied to encode the
spectral and spatial information of the spins. Once an ade-
quate number of projections are acquired, an image can be
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Fig. 1. In spectral–spatial imaging, line integrals are measured through a
pseudo object by first applying a static magnetic field gradient, then
sweeping the main (uniform) magnetic field to excite electron magnetic
moments. Here, the vertical axis is the spatial axis and the horizontal axis
is the spectral axis. The spatial axis is normalized to make the FOV same
as the spectral window DH; c = DH/L is the normalizing constant.
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reconstructed using filtered backprojection (FBP) [15],
which is based on the direct inversion of the Radon trans-
form. To image the spectral dimension, projections are
acquired at different gradient strengths. However, low sig-
nal-to-noise ratio (SNR), long acquisition time, and hard-
ware limitations restrict the data acquisition at high
gradient strengths. As a result, FBP imaging is degraded
by the unobservable projections—a problem typically
referred to as ‘‘missing angle tomography’’. The common
solution is a projection–reprojection approach [16–18], in
which missing data are synthesized at each iteration by
computing projections through a FBP image or algebraic
reconstruction image after smoothing the spectral dimen-
sion by curve fitting to an assumed lineshape function.
The FBP or algebraic image reconstruction at each itera-
tion requires a magnetic field sweep width that is several
times the maximum linewidth to avoid error in truncating
lineshape tails; a factor of 5–20 is typically adopted [19].

Thus, existing spectral–spatial imaging techniques are
hampered by long collection times due to large sweep
widths, large number of projections and by missing projec-
tion angles. In this work, we explicitly use prior knowledge
of the lineshape functional form, such as Lorentzian, to
address these deficiencies. Spectral–spatial EPR measure-
ments are modeled as a function of spin density and line-
shape parameters at each spatial location. Object
properties are inferred from the data by maximum a poste-

riori probability (MAP) estimation. With no reliance on
backprojection for inversion, the approach suffers no arti-
facts from missing projection angles, arbitrarily spaced
sampling of gradient strength or spectral truncation. The
estimation framework directly accounts for the decrease
in SNR versus gradient strength, provides a principled
means of selecting gradient strengths for acquisition, and
reports noise sensitivity of estimated parameters. Simula-
tion and experimental results demonstrate that reliable
reconstruction is possible from two projections and a spec-
tral window that is only equal to the maximum spectral
linewidth. Additional projections or increased sweep width
provide increased robustness to measurement noise. The
proposed technique is described for two-dimensional spec-
tral–spatial imaging and can be extended to higher
dimensions.

2. Data model

In this section, a mathematical model is formulated to
describe the spectral–spatial EPR measurements in terms
of the unknown spin density and spectral profile. For clar-
ity and simplicity of presentation, one spatial dimension is
considered here.

2.1. Parametric object model

Let the spatial dimension be denoted by y. The field of
view (FOV) L is discretely approximated as K uniformly
spaced piece-wise constant intervals numbered by k from
�K/2 to K/2 � 1. For interval k, the lower and upper end-
points yl,k and yu,k are given by

yl;k ¼ k
L
K

and yu;k ¼ ðk þ 1Þ L
K

ð1Þ

On each interval, the spectral dimension, denoted by h,
is assumed to have a Lorentzian lineshape. The spin density
and Lorentzian half-linewidth (i.e., half width at half max-
imum) in the kth interval are denoted by dk and sk, respec-
tively. The center of the Lorentzian is assumed to be
known, constant, and equal to h0 for every interval. Thus,
the spectral–spatial object model is given by

Sðy; hÞ ¼ dksk

ðh� h0Þ2 þ s2
k

; yl;k 6 y < yu;k ð2Þ

Let d and s denote the lists of K spin densities and K

half-linewidths specifying the object model, and define
n = [d s]T to be the column vector of the 2K parameters.
2.2. Parametric projection model

The geometry of a 2D spectral–spatial projection is
depicted in Fig. 1. A static gradient field is used to create
a pseudo angle a, where

ffiffi
2
p

DH
cos a is the sweep-width and DH

is the spectral window; the maximum pseudo angle amax

relates to the physical maximum gradient Gmax by
L = tan(amax)DH/Gmax [20].

The normal distance of the line of integration from the
origin of the pseudo object is denoted by s. The line of pro-
jection (AB) is given by
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h ¼ y
DH
L

tan aþ s
cos a

ð3Þ

and intersects the lower and upper edges of the kth segment
at positions yl,k and yu,k, respectively. The corresponding h

co-ordinates are

hl;kðs; aÞ ¼ yl;k

DH
L

tan aþ s
cos a

ð4Þ

hu;kðs; aÞ ¼ yu;k

DH
L

tan aþ s
cos a

ð5Þ

The projection P(s,a;n) is given by the line integral

P ðs; a; nÞ ¼ c
sin a

XK2�1

k¼�K
2

Z hu;kðs;aÞ

hl;kðs;aÞ

dksk

ðh� h0Þ2 þ s2
k

dh ð6Þ

where c is a calibration constant. Note that the projection
lines are not truncated by any spectral window; therefore,
the model does not suffer the approximation error intro-
duced in inverse Radon transform reconstruction by
neglecting contribution from area under the tails of the
spectral lineshape outside the spectral window.

If the modulation amplitude and frequency are small,
then the measured data f(s,a;n) due to Zeeman modulation
are proportional to the first derivative of P(s,a;n) with
respect to s and are scaled by a factor of cos2a [19]

f ðs;a;nÞ ¼ ~cðcos2 aÞ o

os
Pðs;a;nÞ

¼ ~c
XK2�1

k¼�K
2

dksk

tana

� 1

ðhu;kðs;aÞ� h0Þ2þ s2
k

� 1

ðhl;kðs;aÞ� h0Þ2þ s2
k

 !

ð7Þ

where ~c is the revised calibration constant.
If N samples are taken at every angle, then s may be

replaced by sample number n in Eq. (7) using

s ¼
ffiffiffi
2
p

DHn
N

; n ¼ �N=2; . . . ;N=2� 1 ð8Þ

Substitution of Eqs. (1) and (8) into Eqs. (7), (4), and (5)
yields

f ðn;a;nÞ ¼ ~c
tana

XK2�1

k¼�K
2

dksk

� 1

ðhu;kðn;aÞ� h0Þ2þ s2
k

� 1

ðhl;kðn;aÞ� h0Þ2þ s2
k

 !

hl;kðn;aÞ ¼ k
DH
K

tanaþ
ffiffiffi
2
p

DHn
N cosa

hu;kðn;aÞ ¼ ðkþ 1ÞDH
K

tanaþ
ffiffiffi
2
p

DHn
N cosa

ð9Þ
Note that by application of L’Hôpital’s rule to Eq. (9), the
zero gradient projection case, i.e., a = 0, gives

f ðn; 0; nÞ ¼ 2~cDH
K

XK2�1

k¼�K
2

dksk h0 �
ffiffi
2
p

DHn
N

� �
ffiffi
2
p

DHn
N � h0

� �2

þ s2
k

� �2
ð10Þ
2.3. Noise model

Measurement noise is modeled as additive, zero mean,
Gaussian, and uncorrelated with variance r2. Let Y denote
the measurements, with samples from all angles concate-
nated. Thus, Y is a multi-variate Gaussian random vector
with mean f and diagonal covariance matrix r2I.

Given this parametric model, spectral–spatial imaging is
the task of inferring parameters d and s from the noisy
observations, Y.

3. Parameter estimation

A Bayesian approach is adopted for parameter estima-
tion and yields a regularized least-squares inversion. A con-
fidence measure for estimated parameters is determined
using the Cramér–Rao lower bound.

3.1. Maximum a posteriori probability (MAP) estimate

The parameter vector n is estimated by maximizing the
posterior probability of n given the noisy measurements,
Y [23]. Invoking Bayes’ formula

n̂ ¼ arg max
n

pðnjYÞ ¼ arg max
n

pðYjnÞpðnÞ
pðYÞ

¼ arg min
n
� log pðYjnÞ þ log pðnÞ
� �

¼ arg min
n

1

2r2

X
n;a

ðY ðn; aÞ � f ðn; a; nÞÞ2 þ gðnÞ ð11Þ

The prior probability density p(n) � exp{�g(n)} is used to
encode prior knowledge of the spectral–spatial object. We
adopt

gðnÞ ¼
XK=2�2

k¼�K=2

kdðdkþ1 � dkÞ2 þ ksðskþ1 � skÞ2 ð12Þ

to express the belief that smooth distributions of spin den-
sity and half-linewidth are likely.

For decreasing (kd,ks) and fixed measurement noise
power r2, the MAP estimate allows less smoothness and
enforces greater fidelity to the noisy measurements. Here,
we adopt 2r2ks = 2r2kd = k, assuming the dynamic range
of numerical magnitudes of dk and sk to be of the same
order; this can be achieved either by choosing appropriate
units of dk and sk or by scaling dk and absorbing the scaling
factor into ~c. Multiplying the cost function of Eq. (11) by
2r2 yields
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Fig. 2. 1D spatial phantom with K = 32 and piece-wise constant spin
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n̂ ¼ arg min
n

X
n;a

Y ðn; aÞ � f ðn; a; nÞ
	 
2

þ k
XK=2�2

k¼�K=2

dkþ1 � dkð Þ2 þ skþ1 � skð Þ2 ð13Þ

The function g(n) alternatively may be viewed as a regular-
ization term added to the least-squares cost. Roughness
penalties are commonly adopted for image reconstruction
and restoration to combat oscillation in least-squares solu-
tions: see, e.g., [21,22] and references therein.

3.2. Numerical optimization

The optimization task in Eq. (13) may be solved by
many numerical methods; we use the interior-reflective
Newton method implemented in the Matlab1 7.1 routine
lsqnonlin. Note that the cost function is quadratic in
d but nonconvex in s. Further, the gradient of the cost
function is easily computed. The iterative optimization
algorithm is initialized at dk = 0 and sk = smin for each k,
where smin > 0 is a minimum physically meaningful half-
linewidth. In addition, the spin density is constrained by
dk P 0 and half-linewidth by smin 6 sk 6 smax.

3.3. Cramér–Rao bound on error variance

The Cramér–Rao bound (CRB) gives a lower bound on
the parameter estimation error variance for any unbiased
estimator [23]. We use the CRB to calculate the posterior
confidence interval for estimated parameters. The bound
is obtained by inverting the Fisher information matrix, IF

E½ðn̂� nÞðn̂� nÞT�P I�1
F ð14Þ

where E denotes expectation, the left-hand side is the 2K-
by-2K error covariance matrix, and the inequality A P B

denotes that the matrix difference A � B is nonnegative
definite.

In the Bayesian estimation framework, the Fisher infor-
mation matrix IF is the sum of two terms: IM due to mea-
surements and IP from the prior information [23], where
the (i, j)th elements of IM and IP are given by

IMij ¼ �E
o2 ln pðYjnÞ

onionj

" #
ð15Þ

and

IPij ¼ �E
o2 ln pðnÞ
onionj

" #
ð16Þ

Fisher information describes the local curvature of the log-
likelihood function and admits an intuitive interpretation.
At parameter values for which the log-likelihood has low
curvature (i.e., is relatively flat), the cost function in Eq.
1 Matlab is a registered trademark of The Mathworks, Inc., Natick,
MA, USA.
(13) is not sensitive to small changes in the estimated
parameters; hence, the estimation error variance due to
measurement noise is relatively large. In contrast, where
the log-likelihood function has high curvature, the cost is
sensitive to small changes in the estimated parameters,
resulting in low variance parameter estimates.

In Section 5, the proposed imaging procedure is applied
to measured data collected from nitroxide solutions using
an L-band spectrometer. As prelude, Section 4 explores
two questions via computer simulation. First, what is the
sensitivity of parameters to perturbations in measured
data? Second, which projection angles are most
informative?

4. Simulation results

The data model postulated in Section 2 and inversion
procedure described in Section 3 are examined via numer-
ical simulations. Synthetic experiments are used to evalu-
ate sensitivity to local minima, to quantify sensitivity to
additive measurement noise, to study polynomial correc-
tion of baseline drift, to explore selection of projection
angles, and to evaluate selection of regularization
constant.

Simulation results are reported for the piece-wise con-
stant phantom shown in Fig. 2. The Lorentzian peak loca-
tion is h0 = 1 G. For Sections 4.1 and 4.2, the simulation
parameters are: spectral window DH = 3 G, K = 32 spatial
segments, N = 256 samples per projection angle and two
projections at a = �83.1� and �69.2�.

One goal in simulation is to evaluate the relative infor-
mation content of different projection angles. Therefore,
k is set to zero to avoid any confounding influence from
the smoothness prior, p(n).
density and half-linewidth (dashed lines). Estimated dk and sk (solid lines)
from 100 random initializations and for a fixed noise realization at 30 dB
(r = 0.0051). The 100 estimated profiles are superimposed.
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4.1. Convexity and initialization

Numerical experience suggests that local minima do not
pose a hazard to the nonconvex optimization in Eq. (13).
To test sensitivity to initialization, the optimization routine
was executed for 100 random initializations, dk uniform on
[0,1] and sk uniform on [0.05,0.9], k = � 16, . . . , 15. Fig. 2
shows the superimposed estimated dk and sk for 100 ran-
dom initializations. The signal-to-noise ratio (SNR) was
set at 30 dB, where SNR is defined as the ratio of signal
power to noise power. The maximum, across all k and all
trials, of observed variance of spin density (dk) estimates
is 3.3 · 10�7 and that of half-linewidth (sk) estimates is
8.5 · 10�7. The maximum, across k, of absolute deviation
from the mean estimate for dk is 0.0027 and for sk is 0.0044.
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 f

Fig. 4. Cramér–Rao bound of the spin density d2 and half-linewidth s2

versus angle of projection a.
4.2. Bias and variance

The spin density and half-linewidth were estimated from
500 different noise realizations. The mean estimation error
for dk has a maximum absolute value of 2.6 · 10�3 across k

and the same for sk is 2.8 · 10�3 at 30 dB SNR. Thus, the
mean estimation errors are negligible.

Fig. 3 displays simulated error standard deviation of
half-linewidth (sk) from 500 different noise realizations,
along with the corresponding Cramér–Rao bound. The fig-
ure illustrates the efficacy of the theoretical bound to char-
acterize noise sensitivity. Two themes are seen which are
likewise observed for other synthetic phantoms: uncertain-
ty in lineshape increases for lower spin density, and uncer-
tainty decreases away from the center of the FOV.
4.3. Angle selection

The Cramér–Rao bound can also inform selection of
projection angles. Fig. 4 shows the CRB for error standard
deviation of the d2 and s2 parameters versus angle of
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projection for the object shown in Fig. 2. The graphs illus-
trate the two opposing effects of higher gradient strengths.
On one hand, higher gradient, hence higher projection
angle, yields more informative projections. On the other
hand, the higher gradient yields lower SNR. The two effects
combine in Fig. 4 to give minimum parameter error at a
high angle near 80�. To explore a combination of projec-
tion angles, Fig. 5 displays the CRB for various pairs of
angles and shows that (80.60) is preferred over the nearly
complementary angle pair (85.5). This CRB sensitivity
analysis can only be computed for a known object; none-
theless, it was observed that the error bounds for many
objects show the same trends as found in Figs. 4 and 5.
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Thus studying the CRB for simulated objects can guide the
selection of projection angles to be collected in practice.
4.4. Selection of regularization constant

To explore dependence of reconstruction error on the
parameter k, simulations were run at SNR values from
15 to 35 dB in 5-dB steps. Reconstructions were computed
for k in the set {0,0.0001,0.001, 0.01,0.1,1}. The root mean
square error (RMSE) was averaged from 50 trials at each
combination of SNR and k. Over the range of SNR values
considered, selection of k from the three orders of magni-
tude {0.001, 0.01,0.1} yields similar RMSE; no more than
3.6% difference was observed. Thus a wide range of k val-
ues is found to give similar reconstruction results.

With decreasing SNR, the RMSE increases; and, the
value of k yielding lowest RMSE is SNR dependent. The
choice k = 0.1 yielded lowest RMSE for SNR values of
20, 25, and 30 dB. Expectedly, at lower SNR, k should be
increased to reflect the reduced fidelity of the measured
data.
4.5. Baseline drift correction

Since the sweep-width is of the order of linewidth of the
Lorentzian, the standard baseline drift correction method
on the measured data after integration cannot be applied
directly in the proposed approach. Instead a polynomial
model of the baseline is added to the forward projection
model and the parameters of the polynomial at each projec-
tion angle are estimated from the measured data. Simulation
showed that if a baseline drift of 20% of the output signal
peak per Gauss is introduced, then the average RMSE of
s from 50 trials is 43% at 30 dB SNR when baseline drift
in not included in the model. But if a baseline drift model
is used, then the average RMSE drops to 5%.

Fig. 6 shows a typical reconstruction result from projec-
tions with baseline drift.
5. Experimental results

An experiment was performed to validate the proposed
technique and its performance. Lineshape is characterized,
spin density and half-linewidth are estimated from mea-
sured data, the residual between measured data and model
fit is analysed, and Cramér–Rao bounds are reported.

The phantom shown in Fig. 7 was constructed from three
tubes with inner diameter of 2.75 mm each and outer diam-
eter of 4.0 mm. Tubes were filled with three different con-
centrations (1.0, 0.8, and 0.5 mM from left to right) of
15N-PDT (4-oxo-2,2,6,6-tetramethyl-piperidine-d16-15N-
oxy) radical dissolved in distilled water. Chromium oxalate
(CrOx) in distilled water was used as a broadening agent.
The concentrations of CrOx in the three solutions were 0,
2.33, and 0.65 mM, respectively. A detailed discussion on
CrOx-induced linebroadening is given elsewhere [24].
5.1. Lineshape characterization

To characterize the lineshape function, the absorption
signal from each tube was measured separately using an
L-band (1.2 GHz) EPR spectrometer. The Lorentzian
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Table 1
Characterization results of solutions used in the phantom

Concentration (mM) % fit error Fit error (dB) s (Gauss)

1.0 5.2 �25.7 0.35
0.8 4.7 �26.5 0.71
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curve-fit for the 0.5 mM solution is shown in Fig. 8. The
results of curve-fit for all three solutions are summarized
in Table 1. The fit error is defined as the ratio of the norm
of residual to the norm of measured lineshape.
0.5 5.2 �25.7 0.45

The spin densities in the three tubes are proportional to the solution
strengths. The half-linewidths are obtained from Lorentzian curve-fit to
the zero gradient projections obtained for the three solutions.
5.2. Spectral–spatial imaging

Imaging was carried out with a reentrant resonator of
diameter of 12.6 mm and a useable height of 12 mm.
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Fig. 8. Measured zero gradient projection of the 0.5 mM solution and the
best-fit Lorentzian. The fit error is 5.2%.
Results are reported in Sections 5.3–5.5 for the following
spectrometer settings: incident power 4 mW; spectral win-
dow DH = 1.4 G; spatial field of view L = 14.14 mm; mod-
ulation amplitude 0.2 G; modulation frequency 100 kHz.
Various spectrometer settings gave consistent reconstruc-
tion results. A total of 13 projections were acquired. Each
acquired projection had 4096 data points which were
downsampled to 256 points. No corrections for baseline
or B1 field inhomogeneities [25] were applied.
5.3. Parameter estimation

Spin density and half-linewidth are estimated using Eq.
(13), and the reconstructed object is shown in Fig. 9. The
estimated spin density and estimated half-linewidth are
shown in the Fig. 10. Two angles of projection, �83.1�
(8.3 G/cm) and �69.2� (2.6 G/cm), are used, and the pro-
portionality constant ~c is chosen so that the spin densities
dk have approximately the same range of values as the
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Fig. 10. Top-left: reconstructed spin density (dk) values from experimental
data. Bottom-left: Reconstructed half-linewidth (sk) values. Top-right:
Cramér–Rao bounds for estimation error standard deviations of dk.
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tions of sk. The dk and sk estimates are accepted if the CRB is less than 10
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half-linewidths sk. The modulation gave a measured PSNR
of 14.4 in the �83.1� projection and 63.6 for the �69.2�
projection, where PSNR is the ratio of the peak signal to
the peak noise. The total acquisition time for these two
projection angles is 59.3 s. In the numerical optimization,
k = 0.01, smin = 0.3 G and smax = 0.9 G. The computation
time is 4.14 s 4.46 s on a Pentium� D 2.6 GHz processor
with 2 GB RAM.

5.4. Residual analysis

The noise assumptions are examined by analysis of the
residual. The residual, Y(n,a) � f(n,a;n), is the fit error
between the measured data and the estimated parametric
model in Eq. (9). Fig. 11 shows the measured projection
and the fit error. The observed signal-to-noise ratio is
32.5 dB. A Lilliefors test, with 0.05 level of significance,
accepts the hypothesized Gaussian distribution, p = 0.15.

5.5. Cramér–Rao bound

Cramér–Rao bounds for estimation error standard devi-
ations of dk and sk are computed using n̂ and r̂2, where n̂ is
the estimated parameter vector and r̂2 is the measured var-
iance of the residual. The bounds are shown in Fig. 10. The
standard deviation of sk estimation error is high between
the tubes where there is no spin density. If the error stan-
dard deviation is less than 10 times the minimum of CRB
across all k, then the estimated values are accepted and
are otherwise discarded. Note that this reliability analysis
shows only the effect of additive measurement noise and
does not take into account the effects of magnetic field
inhomogeneity or error introduced by deviation of line-
shapes from the functional form in Eq. (2).

6. Comparison with projection–reprojection method

Performance of a projection–reprojection method [16]
was analysed using a simulated tube phantom similar to
the one used for the experiment. The use of simulation
was necessitated by the inability of our spectrometer to
measure the wide sweep width required to follow the pub-
lished guidelines suggested for projection–reprojection.
Fig. 12 shows the reconstruction results from the projec-
tion–reprojection and parametric approaches. For the
parametric method the spectral window and projection
angles reported in Section 5 were again used. With
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Fig. 12. Reconstructed spin density and half-linewidth by projection–
reprojection and parametric methods.
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simulated noise of 30 dB SNR the reconstruction error for
s was 5.4% using the two projection angles and k = 0. The
corresponding data acquisition time is 59.3 s, assuming
a sweep rate of 0.19 G/s and a main field recovery time
of 1 s.

For the projection–reprojection method, the data acqui-
sition and algorithm parameters were varied in an attempt
to obtain the lowest reconstruction error with the least
acquisition time. The spectral window was 14.1 times the
maximum linewidth present; 15 projection angles were
used, uniformly spaced from �81� to 81�. An additional
16 angles were used for reprojection, 14 of which were
selected at the mid-points between the measured angles,
and �85.5� and 85.5� angles were selected at the high gra-
dient region. The PSNR for the zero gradient projection
was equivalent for the two methods. The reconstruction
error for s after six iterations was 18.6%. The correspond-
ing data acquisition time for the reprojection imaging is
37.83 min.

Thus, for this phantom the parametric approach
required 38 times less data acquisition time compared to
the projection–reprojection method and yielded lower
reconstruction error.
7. Discussion

The proposed parametric estimation approach offers sig-
nificant reduction in data acquisition time for spectral–spa-
tial EPR imaging. The savings come from both a small
spectral window and a low number of projections. In com-
parison to tomographic reprojection methods for the
examples considered, the reduced sweep width and reduced
number of projections combine to yield 30:1 to 40:1 reduc-
tion in data acquisition time for equal or lower reconstruc-
tion error.

The maximum a posteriori probability estimation
approach adopted in Eq. (13) reduces to maximum likeli-
hood (ML) estimation for regularization parameter k = 0.
For Gaussian noise, the ML estimate is the nonlinear
least squares curve fit. A nonzero k reduces the oscillatory
artifacts seen in a least squares solution. The estimation
procedure is not sensitive to the choice of k; for the exper-
imental data in Section 5, values of k across three orders
of magnitude, 0.01 6 k 6 1, give similar reconstruction
results.

Higher error at the center of the FOV is observed in
both simulation and measurement. Physically, consider
the line integrals through the pseudo-object that yield the
samples near either end of a projection. These line integrals
depend on only a few spatial locations, and therefore have
contribution from only a few unknown values of spin den-
sity and line width. Consequently, parameters at the ends
of the 1D spatial object are less sensitive to estimation
error.

The proposed imaging approach is a direct inversion
of the measured data using a regularized nonlinear
regression. Unlike tomographic approaches, no approxi-
mation error is introduced by truncation of the lineshape
by the spectral window. The estimation procedure is
applicable for any set of arbitrarily spaced projection
angles and is not handicapped by the missing angle arti-
fact introduced by tomographic inversion. Additionally,
the estimation approach directly and explicitly incorpo-
rates into the inversion the noise properties of the spec-
tral–spatial measurements. In contrast, in tomographic
processing with magnetic field modulation, numerical
integration to obtain projection data introduces strong
noise correlation, and backprojection disregards the high
variability in PSNR that is due to the cos2a scaling
shown in Eq. (7).

The model-based inversion exploits prior knowledge
that the spectral lineshapes are from a parametric family
of functions. Using the model in Eq. (2), the number of
unknowns in a K · K image is reduced from K2 to 2K.
Moreover, as illustrated in Fig. 1, every sample from each
projection angle contains information from every spatial
location, thereby permitting recovery of the spin density
and linewidth from a single projection in the noiseless case.
Additional projections provide increased robustness to
measurement noise and modeling imperfections.

The proposed imaging procedure given by Eq. (13) may
be readily extended in two ways. First, extension to three
spatial dimensions requires no new assumptions and entails
only modification of Eq. (6) to compute a definite integral
over the surface of a planar slice through a voxel. Second,
the lineshape model in Eq. (2) may be extended from
Lorentzian to any parametric function, such as a mixture
of Lorentzians with unknown central locations, or the con-
volution of a Gaussian with a Lorentzian.

A strength of the proposed processing procedure is the
explicit identification of the physical assumptions adopted
in its derivation. This transparency allows informed judg-
ment concerning the suitability of the technique for any
candidate application.
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8. Conclusion

We have presented a parameter estimation framework
for spectral–spatial EPR imaging. The approach provides
reliable reconstruction of spin density and spectral line-
width with an order of magnitude reduction in data acqui-
sition time, compared to tomographic inversion. The
proposed technique is suitable for any application in which
spectral lineshapes under study can be accurately approxi-
mated as members of a parametric family of functions. The
imaging procedure was demonstrated using computer sim-
ulation and measurements on an experimental phantom.
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